148 research outputs found

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    The interpretations and uses of fitness landscapes in the social sciences

    Get PDF
    __Abstract__ This working paper precedes our full article entitled “The evolution of Wright’s (1932) adaptive field to contemporary interpretations and uses of fitness landscapes in the social sciences” as published in the journal Biology & Philosophy (http://link.springer.com/article/10.1007/s10539-014-9450-2). The working paper features an extended literature overview of the ways in which fitness landscapes have been interpreted and used in the social sciences, for which there was not enough space in the full article. The article features an in-depth philosophical discussion about the added value of the various ways in which fitness landscapes are used in the social sciences. This discussion is absent in the current working paper. Th

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns

    Get PDF
    RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates

    Major Role of Microbes in Carbon Fluxes during Austral Winter in the Southern Drake Passage

    Get PDF
    Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO2

    DOGS: Reaction-Driven de novo Design of Bioactive Compounds

    Get PDF
    We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties

    Product–process matrix and complementarity approach

    Get PDF
    The relationship between different types of innovation is analysed from three different approaches. On the one hand, the distinctive view assumes that the determinants of each type of innovation are different and therefore there is no relationship between them. On the other hand, the integrative view considers that the different types of innovation are complementary. Finally, the product–process matrix framework suggests that the relationship between product innovation and process innovation is substitutive. Using data from Spain belonging to the Technological Innovation Panel (PITEC) for the years 2008, 2009, 2010, 2011 and 2012, we tested which of the three approaches is predominant. To perform the hypothesis test, we used the so-called complementarity approach. We find that there is no unique relation. The nature of the relationship depends on the types of innovation that interact. Our most significant finding is that the relationship between product innovation and process innovation is complementary. This finding contradicts the proposal of the product–process matrix framework. Consequently, the joint implementation of both types of innovation generates a greater impact on the performance of a company than the sum of their separate implementation

    Prenatal exposure to cigarette smoke or alcohol and cerebellum volume in attention-deficit/hyperactivity disorder and typical development

    Get PDF
    Prenatal exposure to teratogenic substances, such as nicotine or alcohol, increases the risk of developing attention-deficit/hyperactivity disorder (ADHD). To date, studies examining this relationship have used symptom scales as outcome measures to assess the effect of prenatal exposure, and have not investigated the neurobiological pathways involved. This study explores the effect of prenatal exposure to cigarettes or alcohol on brain volume in children with ADHD and typically developing controls. Children with ADHD who had been exposed prenatally to either substance were individually matched to children with and without ADHD who had not been. Controls who had been exposed prenatally were also individually matched to controls who had not been. For prenatal exposure to both smoking and alcohol, we found a pattern where subjects with ADHD who had been exposed had the smallest brain volumes and unexposed controls had the largest, with intermediate volumes for unexposed subjects with ADHD. This effect was most pronounced for cerebellum. A similar reduction fell short of significance for controls who had been exposed to cigarettes, but not alcohol. Our results are consistent with an additive effect of prenatal exposure and ADHD on brain volume, with the effects most pronounced for cerebellum

    Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    Get PDF
    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore